Hydrogel injection could help fix harm to the heart muscle after heart attack

Hydrogel injection could help fix harm to the heart muscle after heart attack

Overview

  • Post By :

  • Source: Science Foundation Ireland (SFI)

  • Date: 19 Feb,2021

Researchers at CÚRAM, the SFI Research Centre for Medical Devices based at NUI Galway, and BIOFORGE Lab, at the University of Valladolid in Spain, have developed an injectable hydrogel which might help repair and prevent additional damage to the heart muscle following a heart attack occasion.

The results of their research have only been published in the prestigious journal Science Translational Medicine.

Myocardial infarction or heart disease is a leading cause of death because of the irreversible damage caused to the heart muscle (coronary artery ) during a heart attack. The regeneration of cardiac tissue is minimal so that the damage caused can’t be fixed by itself.

Latest treatments lack an effective procedure to avoid death and subsequent coronary artery repair following a heart attack.

“This project involved the development and testing of an elastin-based hydrogel derived from a naturally occurring biomaterial in the human body”, explains Professor Abhay Pandit, Scientific Director of CÚRAM and job lead. The hydrogel is based on a family of unique biomaterials, known as elastin-like recombinamers, that BIOFORGE-UVa had grown in the search for innovative hydrogels for regenerative medicine.

“The hydrogel was created to mimic the environment around the heart after an infarction and then customized to be able to protect and promote regeneration of the cardiac tissue”, he explains.

The therapeutic effect of multiple shots of this hydrogel into the cardiac tissue was assessed during the first-ever preclinical study of its type, demonstrating its efficacy for cardiac tissue remodeling after a heart attack.

The worldwide research team, which included researchers in Ireland, Spain, Sweden, France and Italy, were able to show that if their hydrogel was injected into the heart muscle shortly after a heart attack, it resulted in less fibrosis (scarring of the coronary artery ) and an increase in the creation of new blood vessels in the area.

They were also able to observe the increase in the preservation and survival of cardiomyocytes, a sort of cell that allows the heart to conquer, in the affected area.

Professor Pandit added:”This project demonstrates the effectiveness of a distinctive biomaterial-only system able to induce a positive healing effect on cardiac tissue following a heart attack event. The functional benefits obtained by the timely injection of the hydrogel supports and highlight the possible use of this therapy in the clinic. The next step will be to develop a prototype for a delivery system for the hydrogel.”

In this study, we employed a model to specifically look at a type of heart attack that has increased in incidence and is not often treated until the acute phase resolves. Scar tissue that forms after the heart attack often remodels negatively, causing future problems like heart failure. The timely injection of this hydrogel appears to change the way the heart muscle heals after a heart attack. There is a significant positive histological, biological and functional recovery of the injured heart muscle. Work is progressing now to deliver this to the sites of injury in different clinical settings and will be followed with translation into a clinical trial.”

Mark Da Costa, Study Senior Co-Author and Professor and Cardiothoracic Surgeon

CÚRAM’s research focuses on developing diagnostic devices, biomedical implants, cell-device and drug-device combination products to address unmet clinical needs. The recent announcement of a $46M reinvestment in CÚRAM by Science Foundation Ireland in February 2021, demonstrates the Government’s strong commitment to the MedTech industry in Ireland, encouraging the continuation of substantial academic, industry and clinical collaborations that are central to CÚRAM’s work.

Source:
Journal reference:

Contessotto, P., et al. (2021) Elastin-like recombinamers-based hydrogel modulates post-ischemic remodeling in a non-transmural myocardial infarction in sheep. Science Translational Medicine. doi.org/10.1126/scitranslmed.aaz5380

About Author