Subscribe to our Newsletters !!
Drug quality is defined not only how a drug is man
Eppendorf is launching the new VisioNize® Laboratory News
The journey and merging of sperm and egg cells is
This year, the Hamburg based life sciences company
Cipla Limited (BSE: 5
Since it’s an ingredient in so many foods, you h
In a world constantly in motion, Microbioz India r
Researcher from University of Lund identified few cancer cell become more aggressive after accumulating fat droplets and which could not be then treated through chemotherapy or radiations.
According to research the inner structure of cancer tumor has Oxygen deficiency, low pH and lack of nutrients and these type of cell survived under these condition are called stressed cells and is more aggressive than others.
"In order to survive inside the tumour, the stressed cells go into a resting phase. They then become inaccessible to radiation and chemotherapy, but can still accumulate fat droplets. The fat serves as fuel for them, when they later leave their resting phase to grow and spread," explains Mattias Belting.
That cells of a cancerous tumour experience a shift between "good and bad times" has been known for some time. From a cancer cell's point of view, "good times" is when the cancer can spread and cause a relapse.
"We know that only a very small percentage of the cancer cells that enter the blood stream are capable of forming metastases. We believe that it is the cancer cells that are similar to fat cells that are most capable of forming metastases. They can either use fat deposits for energy, to build their cell membranes, or to manufacture signal substances — or do all of this at the same time," says doctoral student Julien Menard, who is the lead author of the research article, which the group has now published in Cancer Research.rnStory source: University of Lund
Journal References:
J. Menard, H. C. Christianson, P. Kucharzewska, E. Bourseau-Guilmain, K. J. Svensson, E. Lindqvist, V. Indira Chandran, L. Kjellen, C. Welinder, J. Bengzon, M. C. Johansson, M. Belting. Metastasis stimulation by hypoxia and acidosis-induced extracellular lipid uptake is mediated by proteoglycan-dependent endocytosis. Cancer Research, 2016; DOI: 10.1158/0008-5472.CAN-15-2831